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The zero-frequency spectral densitiesJ0(0) data1 for the liquid crystalp-(methoxybenzylidine)-p-n-butylaniline
(MBBA) is quantitatively interpreted using a model that includes director fluctuations and rotational diffusion
of symmetric rotors in a nematic phase. The contribution toJ0(0) from director fluctuations has mainly a
second-order component, whereas the first-order contribution toJ1(ω) is suppressed in the megahertz region
(Larmor frequencies are 15.3 and 46 MHz) due to the high-frequency cutoff, which is estimated to be around
3-10 MHz for MBBA. A global target approach is used in the analysis of all the available spectral densities.
As a result, motional parameters and a molecular prefactor for director fluctuations are obtained in the nematic
phase of MBBA.

Introduction

Director fluctuations are unique and important2,3 sources of
nuclear spin relaxation in liquid crystals. These fluctuations
involve collective motions of a large number of molecules.
Studies of director fluctuations can provide information on
molecular properties such as elastic constants and viscosities.
This dynamic process was first used to explain light scattering
experiments in liquid crystals by Chatelain.4 de Gennes5 was
first to recognize that director fluctuations consist of long-range
collective modes of motion in liquid crystals. This hydrody-
namic description in the nematic phase was soon confirmed by
new light scattering experiments.6,7 The first variable frequency
protonT1 study8 indicated that the usual Lorentzian frequency
dependence expected from the BPP theory9 was not obeyed.
This led Pincus10 to derive aω-1/2 frequency relation for the
nuclear spin-lattice relaxation rate. Lubensky11 noted the
square of the nematic order parameter in the spin-lattice
relaxation rate. Following that, many proton NMR studies were
reported by Doane and Visintainer,12 Brochard,13 and Blinc et
al.14 These earlier proton relaxation experiments already showed
that the proton relaxation behavior in liquid crystals was more
complex than originally anticipated by the Pincus theory. In
particular, molecular rotations and translational self-diffusion
have also been shown to cause spin relaxation in liquid crystals
as in normal liquids.
The reorientation of molecules in liquid crystals can be

described by the rotational diffusion model.15,16 The model
assumes a stochastic Markov process for molecular reorientation
in which each molecule moves in time as a sequence of small
angular steps caused by collisions with its surrounding molecules
and under the influence of the potential of mean torque set up
by them. Nordio and co-workers16 considered reorientation of
cylindrical, rigid molecules in uniaxial phases. Each molecule
is characterized by a rotational diffusion tensor, normally defined
in a frame fixed on the molecule. A number of models of
increasing complexity have been proposed.17-21 Recently, we
have examined22,23 how an asymmetric rotational diffusion

tensor for solvent molecules may influence the relaxation data
of 50.7 and 40.8 in their uniaxial phases by solving the full
rotational diffusion equation as described by Tarroni and
Zannoni.19 When couplings between director fluctuations and
molecular reorientations are considered,24,25a “small” cross term
contribution exists inJ1(ω).
When using a small angle (θ) approximation, whereθ is the

angle between the instantaneous director and its equilibrium
orientation, it is well-known that director fluctuations contribute
a frequency term in the spectral densityJ1(ω) and have zero
contributions inJ2(2ω) andJ0(ω). However, angular excursions
of the local director can have large amplitudes and high-order
terms ofθ can now contribute toJ2(2ω) andJ0(ω). Second-
order director fluctuations (∝θ2) have been considered by Vold
et al.26 and van der Zwan et al.27 The frequency dependence
in J2 is calculated to be generally small, whereasJ0 is predicted
to be quite large asω f 0.26 Since director fluctuations contain
many long wavelength modes which are effective for spin
relaxation in the kilohertz region, the influence of director
fluctuations for solvent spins in liquid crystals can best be
studied using the field cycling technique.28

Although director fluctuations normally give small contribu-
tions in the megahertz region, there are at least two liquid
crystals 50.722 and 40.823,29 in which director fluctuations have
been used to account for part ofJ1(ω). For these two liquid
crystals, the high-frequency cutoffs appear to be on the order
of 102 MHz, while forp-(methoxybenzylidine)-p-n-butylaniline
(MBBA or 10.4), there is no detectable contribution from
director fluctuations to the deuteron spin-lattice relaxation in
the megahertz regime.30 The same conclusion was made by
Vilfan et al.31 on the basis of their proton NMR study. Recent
published data1 show, however, that there is a substantial
contribution from director fluctuations toJ0(0). The data are
analyzed here using a global target approach.32 We believe that
a possible explanation of the different behaviors among the
studied liquid crystals of then0.m series may be due to their
high-frequency cutoffs, since the prefactorsA for these liquid
crystals are comparable. The paper is organized into a theory
section, which summarizes theoretical spectral densities neces-X Abstract published inAdVance ACS Abstracts,June 1, 1997.
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sary for interpreting our data. This is followed by a section on
results and discussion, and a brief summary.

Theory

Standard theories2,3 of spin relaxation by director fluctuations
in nematics are based on the notion that the mean-square
amplitude〈θ2〉 of the director’s displacement is small such that
terms of this and higher orders can be neglected. Recently,
second-order contributions from director fluctuations are pre-
dicted26,27,33 in J0(0), J1(ω), andJ2(2ω). When treating deu-
terons residing on the rigid part of a molecule, e.g., the methine
deuteron in MBBA, the spectral densities are calculated as
follows:

whereqCD ) e2qQ/h is the quadrapolar coupling constant,âM,Q
is the angle between the C-D bond and the molecularzM axis,
and

with qc ) (η/K)1/2ωc
1/2, ωc is the high-frequency cutoff,K is

the average elastic constant, andη is the average viscosity.S0
is a nematic order of the molecule relative to the local director
and is related to the usual nematic order parameter〈P2〉
according to26

where the parameterR ) kTqc/2π2K is a measure of the
magnitude of director fluctuations. The prefactor is3

By integrating over a circle inq, q′ space rather than a square,
Vold et al.26 obtained from eq 2

This gives

To get the zero-frequency componentJ0DF(0), one needs to
introduce25,26 a low-frequency cutoff in order to remove its
divergence asω f 0. This cutoff frequency can arise from
bulk susceptibility effects. However, this procedure does not
allow one to write down an analytical expression forJ0DF(0).
A less exact procedure26 is to replace the lower limit in the
mode expression by a finite wave numberq1 and gives

whereω1 may be estimated from the magnetic coherence length
ê in the presence of the magnetic field,34 i.e.,ω1 ) K/ηê2 and

with ∆ø being the diamagnetic susceptibility anisotropy andB
the applied magnetic field. When second-order contributions
are included inJ1DF(ω), Joghems et al.33 found that it has a
correction factor (1- 4R), which reduces to 1 whenR is very
small. Thus,

where theU(ωc/ω) function25 accounts for the cutoff of
coherence modes at high frequencies,

andωc ) 4π2K/ηλc2 with the cutoff wavelengthλc typically
the order of the molecular length.
For C-D bonds located in the flexible chain, the effect of

director fluctuations is made smaller as a result of additional
averaging within the chain from conformational changes. It
has been recognized35 in earlier deuterium NMR studies of
MBBA that the spin-lattice relaxation rates for the chain
deuterons should scale with the square of their quadrupolar
splittings if the spin relaxation is caused only by director
fluctuations. Indeed the quadrupolar splitting can give the
segmental order parameter of the C-D bond at carbon sitei,
which is defined by

whereΘ(i) is the angle between theith C-D bond and the
equilibrium director; 〈〈 〉〉 denotes both the conformational
average and overall motional average. In uniaxial phases like
the nematic, the above equation can be expressed as3

whered00
2 (âM,Q

(i) ) denotes the conformational average over the
âM,Q
(i) angle of the particular C-D bond with respect to the
molecularzM axis, andθ is the angle between thezM axis and
the equilibrium director. The assumption was made for the last
step in eq 13 that the motional modes for the internal chain
motions and for the molecular reorientation are decoupled. With
this simplifying assumption, the geometric factor in eqs 6-8
and 10 must involve an additional average due to internal
motions and together with〈P2〉 can be replaced by the segmental
order parameter (or in terms of the quadrupolar splitting) of
the ith deuterons. Thus, director fluctuations contribute to the
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chain deuterons according to

It is noted that in all these equations for director fluctuations,
the contributions toJ0, J1, andJ2 are all related to the high-
frequency cutoffωc. The ωc value depends on molecular
properties and perhaps also on the detailed molecular structure.
Thus, it is expected to change from sample to sample. When
the Larmor frequencyω0 , ωc, like the case in 5O.7 and 4O.8,
the cutoff function of eq 11 approaches unity and the differences
in ωc of different samples become immaterial inJ1(ω). As the
cutoff frequency drops below the Larmor frequency, the cutoff
function approaches zero and the negative cross term (see below)
can in fact cancel theJ1DF. The total director fluctuation
contribution toJ1 may even become negative. In addition, the
J2DF(2ω) is small because of its second-order nature and can
be neglected in the megahertz region. Thus, it may be difficult
to study director fluctuations in the megahertz regime using only
the spectral densitiesJ1 andJ2. The zero-frequency component
J0(0) becomes a unique and useful tool in studying director
fluctuations in this case.
In a stochastic Markovian process, to describe the molecular

reorientation of an asymmetric molecule in an uniaxial medium,
one must find the conditional probability by solving a sym-
metrized form of the rotational diffusion equation. The sym-
metrized rotational diffusion operatorΓ̂ in ref 19 is given in
terms ofε ) (Dx - Dy)/(Dx + Dy) andη ) Dz/F, with F ) (Dx

+ Dy)/2. Dx,Dy, andDzare the principal elements of a rotational
diffusion tensor, defined by a set of molecular axes, andε, an
asymmetry parameter of the rotational diffusion tensor, is zero
in the special case of uniaxial molecules. In general, the
orientational correlation functions can be written as a sum of
decaying exponentials,16,19

wherem andn (n′) represent the projection indices of a rankL
tensor in the laboratory and molecular frames, respectively;
(Rmnn′

L )K/F, the decay constants, are the eigenvalues of theΓ
matrix, and (âmnn′

L )K, the relative weights of the exponentials,
are the corresponding eigenvectors.
The spectral densities in a deuteron NMR experiment (L )

2) are the Fourier transform of the time correlation functions
(m ) 0, 1, 2) to give

where the subscript R is used to denote molecular rotation. For
the methine deuteron, one may use the above equation to give

JmR
(0) (mω) with âM,Q ) 67° (the molecularzM axis is taken to be
along the para axis of the butyl ring) andqCD ) 185 kHz. For
the deuterons in the chain, a decoupled model36 is used to
describe correlated internal rotations in the flexible butyl chain,
and there are 27 different conformations.30 The spectral
densities can be written on the basis of these models:

whereqCD
(i) ) 165 kHz,âM,Q

(i)l andRM,Q
(i)l are the polar angles of

the Ci-D bond of the comformerl in the molecular frame, and
λk andxb(k) are the eigenvalues and eigenvectors from diagonal-
izing a symmetrized transition rate matrix. The rate matrix
describing conformational changes in the butyl chain contains
jump constantsk1, k2, and k3 for one-, two-, and three-bond
motions36 in the chain. Furthermore, if director fluctuations are
slow in comparison with molecular rotations, couplings between
these two motions produce24,25a small cross term contribution
to J1(ω). Following Freed,25 this negative cross term for the
methine deuteron can be shown as

where the subscript CR is to denote the cross term andbK )
(â100

2 )K/(â100
2 )1 are relative weights of exponentials that de-

scribe the molecular reorientation. For the methylene deuterons
on the chain,

Here cross terms from second-order director fluctuations are
neglected. Finally, the calculated spectral densities for theith
deuterons are obtained from

wherei ) 0, 1, 2, and 3, withi ) 0 denoting the methine site.
Our experiments consist of measurements of the spin-spin

relaxation rate1 1/T2 at 46 MHz and measurements of the
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Zeeman and quadrupolar spin-lattice relaxation rates30 1/T1Z
and 1/T1Q at 15.3 and 46 MHz. From the spin relaxation theory
for deuteron (I ) 1), these are related to the spectral densities
Jm(mω) by37

whereω0 is the Larmor frequency.

Results and Discussion

The spectral densitiesJm
(i)(mω0) at two different Larmor

frequencies, reproduced in Figures 1 and 2, are those reported
before.1,30 The analysis of quadrupolar splittings30 used the
internal energiesEtg ) 2550 J/mol andEgg ) 6000 J/mol to
give the model parameters (Xa, λc ) Xc/Xa, 〈P2〉, andSxx - Syy
) needed in our analysis. In particular, the order parameter
tensor of the average conformer allows us to adopt a biaxial
orienting potential (specified bya20, a22)19 for solving the
rotational diffusion equation. We analyze the spectral densities
of methine C0 and methylene Ci (i ) 1, 2, 3) deuterons using
a global target approach,32 that is, treating the spectral density
data at different temperatures and at both Larmor frequencies
in the same fitting procedure. Smoothed lines of data were used
to obtain theJ0

(i)exp(0), J1
(i)exp(ω0) andJ2

(i)exp(2ω0) values at six
different temperatures. Now, individual target analysis (i.e.,
minimization at a single temperature) must first be performed
before the global procedure in order to get some ideas on
temperature relations of the model parameters. The global target
analysis takes advantage of the fact that target parameters of
the model vary smoothly with temperature. This was found38

particularly useful when the parameters of the model were highly
correlated and/or affected by large statistical errors. An

optimization routine39 (AMOEBA) is used to minimize the sum
squared percent errorF,

where the sumk is over six different temperatures, andm) 0,
1, or 2. The fitting qualityQ is given by the percentage mean
squared deviation,

It is believed that the motional biaxiality for the MBBA
molecule is very small. Therefore,Dx ) Dy is set in our
minimization. From the individual target analysis, it is clear
that the diffusion constants and the jump constantsk1 andk3 all
obey simple Arrhenius-type relations, giving

where the global parameters are the pre-exponentialsDx
0, Dz

0,
k1
0, and k3

0, and their corresponding activation energiesEa
Dx,

Ea
Dz, Ea

k1, andEa
k3. When such a relation does not exist for a

target parameter likek2 and the prefactorA of director
fluctuations, it is still possible to introduce an interpolating
relation linking its values at various temperatures. Ask2 and
ADF()A〈P2〉2) are weakly temperature dependent, we model
them by

Figure 1. Plots of experimental (symbols) and calculated (lines)
spectral densities of MBBA by usingωc ) 10 MHz. Parts a and b are
for C0 and C1, respectively. The circles denote the spectral densities
J0(0), the open symbols denoteJ1(ω0), while the closed symbols denote
J2(2ω0). The triangles represent the data at 15.3 MHz, while the squares
represent data at 46 MHz. Solid and long dashed lines denote calculated
spectral densities at 15.3 and 46 MHz, respectively.

Figure 2. Plots of experimental (symbols) and calculated (lines)
spectral densities of MBBA by usingωc ) 10 MHz. Parts a and b are
for C2 and C3, respectively. The symbols are the same as those in
Figure 1.
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0 exp(-Ea

k3/RT) (33)

T2
(i)-1 ) 3

2
J0
(i)(0)+ 3

2
J1
(i)(ω0) + J2

(i)(2ω0) (25)

T1Z
(i)-1 ) J1

(i)(ω0) + 4J2
(i)(2ω0) (26)

T1Q
(i)-1 ) 3J1
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where the temperatureTmax is the highest temperature used in
the global analysis, and the global parametersk′2, k′′2, A′DF, and
A′′DF are optimized. Thus there are 12 global parameters (two
from each of eqs 30-35) for the global fit.
We analyze the deuteron data at four carbon sites (C0, C1,

C2, C3 ). At each site, there are two experimentalJ1 and two
experimentalJ2 values from the two Larmor frequencies, but
only oneJ0(0) value due to the zero-frequency component being
independent of the Larmor frequency. So we have a total of
120 spectral densities from six temperatures to derive 12 global
parameters for a givenωc value. For convenience, the diffusion
and jump rate pre-exponentials were not used as global
parameters. Rather eqs 30-33 were rewritten in terms of the
activation energies and the diffusion and jump constantsD′x,
D′z, k′1, k′3 at 309 K (Tmax ), giving the set of global parameters
used in our minimization. Initial values at the chosen temper-
ature (309 K) were first obtained by an individual target analysis.
We assume for simplicity thatωc is constant in the nematic

phase of MBBA. The assumption is probably good for the
temperature range studied here. Several high-frequency cutoff
values, between 3 and 20 MHz, were tested (Table 1); these
fits between the calculated and experimental spectral density
data are in general acceptable, sinceQ values are all less than
1%. The derived activation energies vary slightly withωc. At
ωc ) 3 MHz, a betterQ value of 0.95% was obtained, whereas
atωc ) 20 MHz, a betterF value of 7900 was achieved. Thus,
it is reasonable to estimate theωc value for MBBA to be around
3-10 MHz. We note that theEa

Dx is a little larger thanEa
Dz,

indicating the spinning motion of the MBBA molecule is less
hindered than the tumbling motion. This was not achieved when
a global target analysis was carried out32 using only theJ1(ω)
andJ2(2ω) data. Without loss of generality, we takeωc ) 10
MHz in the following discussion. From the global minimiza-
tion, the predicted site dependences of the spectral densities and
director fluctuation contributions are listed in Table 2 for one
temperature. Director fluctuations mainly have effects on the
zero-frequency spectral densities. They account for 35% of the
methine J0(0) and over 50% for the methylene (C1-C3)
J0
(i)(0). Their total first-order contributions (J1DF

(i) plus negative
J1CR
(i) ) to J1

(i)(ω) are small but negative; the biggest effects occur
at the chain deuterons, where the director fluctuation contribu-
tions amount to about 10% ofJ1

(i)(ω). The second-order
contributions ofJ2DF

(i) to J2
(i)(2ω) are indeed very small and less

than 1%. Indeed the observed frequency dependences in
J2
(i)(2ω) are mainly due to “slow” molecular rotations. The
model parameters (3k’s, 2 D’s andA) for ωc ) 10 MHz at
each chosen temperature are summarized in Table 3. The
activation energies (Table 1) and the pre-exponentials (k1

0 )
1.75× 1029 s-1, k3

0 ) 4.3× 1025 s-1, Dx
0 ) 1.74× 1016 s-1,

and Dz
0 ) 1.13 × 1017 s-1) are used to plot the theoretical

spectral density curves in Figures 1 and 2. TheJ2
(i) values at

46 MHz show deviations at C0 to C2. Although there are some
systematic deviations between experimental and calculated
spectral densities, the overall fits are quite satisfactory. It is
interesting to note that a comparison of the rate and diffusion
constants with those reported before32 shows reasonable agree-
ments. In Table 4, we list the prefactorA values for the different
samples of then0.m series. It is noted that the prefactorA
obtained for MBBA is larger than that of 50.722 and 40.823, yet
there is negligible contribution from director fluctuations toJ1
of MBBA at the same Larmor frequencies. This is of

course due to the lower high-frequency cutoff in MBBA. Using
typical values ofK ) 5 ×10-12 N andη ) 6.5×10-2 Pa s,A
) 1.6×10-5 s1/2 is calculated from eq 4 at 300 K. Thus, the
derivedA values appear to agree with the theory. The calculated
cross termJ1CR

(i) has absolute values slightly larger thanJ1DF
(i) ,

contrary to the prediction that the cross term should be “small”.
Therefore, the controversy with the cross term remains to be
explored with proper theoretical models. As seen in Table 4,
the temperature dependence ofA in MBBA differs from those
of 50.7 and 40.8. It is not clear at present why the differences
exist. The error limit for a particular global parameter was
estimated by varying the one under consideration while keeping
all other global parameters identical to those for the minimum
F, to give an approximate doubling in theF value. Thus the
error bar forDx

0 is given by (1.25-2.54)× 1016 s-1, while that
of Dz

0 is (0.88-1.53) × 1017 s-1. Similarly, k1
0 varies from

0.85× 1029 s-1 to 5.2× 1029 s-1 andk3
0 varies from 1.8× 1025

s-1 to 4.3× 1026 s-1. Finally, the error bars for the derived
activation energies are indicated in Table 1 forωc ) 10 MHz.
These activation energies are fairly well-defined by the global
target analysis.

TABLE 1: Comparisons of Activation Energies Ea (in
kJ/mol) and Fitting Results Using Different High-Frequency
Cutoffs for MBBA in our Calculations

ωc (MHz) Ea
k1 Ea

k3 Ea
Dx Ea

Dz F Q

3 103 80.0 49.9 45.0 10 600 0.95%
10 102( 2 78( 2 50.0( 0.8 44.3( 0.6 9 600 0.97%
13 100 77.2 49.2 44.0 9 000 0.97%
20 95.9 75.1 47.8 43.4 7 900 0.99%

TABLE 2: Calculated Spectral Densities for C0-C3 Deuter-
ons Due to Director Fluctuations and Molecular Reorienta-
tion in the Global Minimization with a High-Frequency Cut-
off ωc ) 10 MHz; The Numbers (in s-1 ) within Parentheses
Are for 46 MHz, While Those without Parentheses Are for
15.3 MHz, and the Temperature Is 300 K

Ci J0(0) J0DF(0) J1(ω) J1DF(ω) J1CR(ω) J2(2ω) J2DF(2ω)

C0 74.59 26.16 53.17 2.46 -4.17 26.2 0.04
(74.59) (26.16) (38.54) (0.3) (-2.0) (21.75) (0.00)

C1 102.7 58.29 40.38 5.47 -9.29 14.34 0.09
(102.7) (58.29) (19.75) (0.68) (-4.5) (8.60) (0.01)

C2 30.42 18.43 12.21 1.73 -2.94 6.63 0.03
(30.42) (18.43) (9.12) (0.21) (-1.4) (5.72) (0.00

C3 31.62 20.11 11.1 1.89 -3.21 4.97 0.03
(31.62) (20.11) (7.48) (0.23) (-1.5) (3.93) (0.00)

TABLE 3: Motional Parameters Derived from a Global
Analysis of Spectral Densities Usingωc ) 10 MHz

T (K)
k1 (×1011
s-1)

k2 (×1010
s-1)

k3 (×1012
s-1)

Dx (×107
s-1)

Dz (×109
s-1)

A(×10-5

s1/2)

309 10.5 1.51 2.58 6.24 3.66 1.9( 0.4
306 7.12 1.65 1.92 5.16 3.09 1.76
303 4.79 1.80 1.41 4.24 2.60 1.70
300 3.20 1.94 1.04 3.48 2.18 1.71
297 2.12 2.09 0.76 2.84 1.82 1.76
294 1.39 2.24 0.55 2.31 1.52 1.78

TABLE 4: Comparisons of A Values in 1O.4, 5O.7, and
4O.8 at Different Reduced TemperatureTred ()T/TC ); The
A Values in Refs 22 and 23 Were Incorrectly Reported Due
to Unfortunate Numerical Errors

Tred 10.4 Tred 50.722 Tred 40.823

0.988 1.93× 10-5 0.993 1.27× 10-5 0.995 9.72× 10-6

0.979 1.76× 10-5 0.979 6.06× 10-6 0.981 5.27× 10-6

0.969 1.70× 10-5 0.964 3.42× 10-6 0.966 3.85× 10-6

0.96 1.71× 10-5 0.95 1.81× 10-6 0.952 2.98× 10-6

0.95 1.76× 10-5 0.936 1.14× 10-6 0.938 2.54× 10-6

0.94 1.78× 10-5 0.924 2.38× 10-6

TC ) 312.6 K TC ) 350.6 K TC ) 351.8 K

k2 ) k′2 - k′′2 (T- Tmax) (34)

ADF ) A′DF - A′′DF (T- Tmax) (35)
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Summary

We explore in the present study the applicability of director
fluctuations up to second-order contributions as well as the
rotational diffusion model of Tarroni and Zannoni (in the limit
of Dx ) Dy ) for both the deuteron spin-spin and spin-lattice
relaxation in the nematic phase of MBBA. OurT1 andT2 data
support the idea that MBBA has a relatively low value for the
high-frequency cutoff (around 3-10 MHz). We find that
director fluctuations have larger effects onJ0

(i)(0) (35%-50%)
than on J1

(i)(ω) (<10%). The derivedA values are quite
reasonable, ranging between 1.7× 10-5 and 1.9×10-5 s1/2.
The fits to the available experimental spectral densities between
293 and 310 K in MBBA are on the whole very satisfactory
with an overall qualityQ factor of about 1%.
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